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Full Fine-tuning
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• Fine-tune all the parameters of pre-trained models(PTM) on downstream 
tasks

Figure from Devlin et.al. 2019



Full Fine-tuning
• Each task needs a separate copy of fine-tuned model parameters
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PTM

PTM

PTM

Task 1 input 𝑥

Task 2 input 𝑥

Task 3 input 𝑥

Task 1 output 𝑦

Task 2 output 𝑦

Task 3 output 𝑦

• Less feasible and prohibitively expensive as the model size and the 
number of tasks increase greatly



Parameter-efficient Tuning
• Only fine-tune a small number of parameters
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PTM

Task 1 input 𝑥

Task 2 input 𝑥

Task 3 input 𝑥

Task 1 output 𝑦

Task 2 output 𝑦

Task 3 output 𝑦
Shared weights and frozen

New Inserted 
Small Modules



Parameter-efficient Tuning
• Representative methods: Adapter (Hously et.al), Prefix-tuning (Liang 

et.al.), Lora (Hu et.al), MAM-Adapter (He et.al)

6



(1) Contribution: A Comprehensive Study on IR Tasks

• Can existing methods perform as well in IR as in NLP?
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Table 1: Dense Retrieval

• Unlike the promising results in NLP, all representative methods cannot achieve a comparable 
performance over full fine-tuning with less than 1% of the model parameters on all datasets



(1) Contribution: A Comprehensive Study on IR Tasks

• Can existing methods perform as well in IR as in NLP?
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Table 2: Re-ranking

• Unlike the promising results in NLP, all representative methods cannot achieve a comparable 
performance over full fine-tuning with less than 1% of the model parameters on all datasets



Observation
• Parameter-efficient but not learning-efficient
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• Sensitive to learning rate and unstable training leading to slow convergence



(2) Contribution: A Theoretical Analysis

• Why the standard setup of parameter-efficient tuning methods falls 
short in IR?

10

S

F

g

△ (𝑎𝑐𝑡𝑢𝑎𝑙) =△ 𝑔

• A discrepancy between the ideal optimization direction and the actual update 
direction

△ 𝑖𝑑𝑒𝑎𝑙 = △ 𝐹,△ 𝑆,△, 𝑔
VS.

Different components contribute different 
to the final optimization direction

Transformer



(3) Contribution: Propose a New Method

• Can we design a parameter-efficient tuning approach to stabilize the 
training process for IR?
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• Insert extra modules in an aside manner beyond inside manner using the idea of ResNet



Main Results

• Our best IAA model with tuning less than 1% of the model parameters 
achieve a comparable performance over full fine-tuning, and is 
significantly better than the best PET at the retrieval stage.
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Main Results

• Our best IAA model with tuning less than 1% of the model parameters 
achieve a comparable performance over full fine-tuning, and is 
significantly better than the best PET at the Re-ranking stage.
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Convergence Analysis

• IAA-L Adapter has a lower loss value than Adapter and also converges faster 
than Adapter
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Conclusions

(1) A comprehensive empirical studies of parameter-efficient tuning 
methods in IR scenarios, at both the retrieval stage and the re-ranking 
stage.

(2) We find that these methods are not learning-efficient and give a 
mathematical analysis.

(3) Based on the above, we thus introduce the aside module to help to 
stabilize the optimization process.
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