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Dense Retrieval
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• The foundation of effective search is high-quality text representation learning.

• Dense retrieval has shown promising results in information retrieval (IR).

a) Model architecture b) Search in the representation space
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Recap the BERT model
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Token-level representations

BERT Pre-training Requirements of DR

Sequence-level representations 
for short queries and long 
documentsMLM, Language Modeling

Sequence-level coherence
based on the interactions of 
two concatenated sentence

NSP, Sentence Order Tasks

Relevance relationship based 
on the separated text sequence 
representations

• BERT learns contextualized word representation and inter-sequence 
coherence relationship.

• There is still a gap between BERT and the requirements of dense retrieval
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL 2019



The weakness of BERT
• BERT is not good at producing high-quality text sequence representations
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• The text sequence representations from original BERT is worse than GloVe.

Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks, EMNLP 2019



Our Goal

Pre-train a discriminative text encoder tailored for dense retrieval to 
improve the retrieval performance and fine-tuning efficiency
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Related Work
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• Two categories: contrastive learning vs. autoencoder-based

• Sentence-BERT, Reimers et.al.
• SimCSE, Gao et.al.
• DeCLUTR, Giorgi et.al.
• ...

• Optimus, Li et.al.
• Seed, Lu et.al.



Contrastive Learning

• Advantages: good discriminative ability
• Challenge: how to augment long text?

• Existing work:
• Most focus on sentence-level or short passage-

level, not document-level
• Their augmentation methods don’t work on 

longer text (too easy)
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• Pull the positive pairs in the semantic space close and push away from negatives



Autoencoder-based

• Learn high-quality representations by reconstructing the input text
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• Advantages: create a bottleneck
• Challenge: not discriminative and suffer from 

the bypass effect 
• Treat all the tokens equally when decoding
• Predict the next token only based on previous tokens

• Existing works: pre-train a strong encoder with 
a weak decoder to alleviate the bypass effect

Less is More: Pre-train a Strong Text Encoder for Dense Retrieval Using a Weak Decoder, EMNLP 2021



Motivation
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• Can we learn a discriminative text encoder for dense retrieval with the 
pros of these two methods but avoid their cons?

Pros Discriminative Bottleneck

Cons

Data augmentation 
methods designed for 
sentence-level are not 

suitable for document-level

(1) Not discriminative to 
decode all tokens equally; 
(2) The bypass effect for 
autoregressive decoder

Contrastive Learning Autoencoder-based



COSTA—COntrastive Span predicTion tAsk
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• Leveraging the merits of contrastive learning and autoencoder

text_b



COSTA
• Key idea: Learning the text sequence representation from its spans via 

a group-wise contrastive loss
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Contrastive span prediction task



COSTA
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Improvements:
• learn document-level representations by ”reconstructing”  

its own multiple spans with different granularities
• Only use the encoder

Advantages:
• Learn discriminative representations while avoid 

designing complicated data augmentation techniques
• Retain the bottleneck ability while avoid the bypass 

effect thoroughly
• Resemble the relevance relationship between query 

and the document



COSTA
Step 1: Multi-granularity Span Sampling
① Sampling Span length from Beta distribution1

② Sample start position randomly

Step 2: Text Encoding
Step 3: Group-wise Contrastive Learning
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Length
Word-level Whole word
Phrase-level 4-16
Sentence-level 16-64
Passage-level 64-128

[1] DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations, ACL 2021



COSTA
Step 1: Multi-granularity Span Sampling
Step 2: Text Encoding
① Use the [CLS] vector represent the whole sequence
② Use mean-pooling to obtain the span representation

Step 3: Group-wise Contrastive Learning
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COSTA
Step 1: Multi-granularity Span Sampling
Step 2: Text Encoding
Step 3: Group-wise Contrastive Learning
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group: document representation and its own spans

Positive pairs from a group

Except itself



COSTA
• MLM task to learn good span representation

• Contrastive span prediction task to learn discriminative sequence 
representations

• Final loss:
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Experiment Setting
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• Pretraining datasets!
• Wikipedia,  over 10 million documents

• 4 large-scale downstream dense retrieval tasks!
• MS MARCO Document ranking and TREC DL Document ranking

• MS MARCO Passage ranking and TREC DL Passage ranking

• Baseline models:
• BM25, BERT, PROP, B-PROP, ICT, SEED



Main Results

19• Beat the baselines significantly!



Comparison with Different Fine-tuning Strategies
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Training Technologies
• In-batch negative
• Static Hard negative mining
• Dynamic Hard Negative (ANCE, 

ADORE)
• Data Augmentation (Rocket QA)
• Distillation (TCT-ColBERT, TAS)
• Denoising False Negatives (RocketQA)

• Fine-tuning with simple strategies COSTA performs better than these advanced 
dense retrieval models with complicated fine-tuning strategies



Breakdown Analysis
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• Longer spans are most useful than short spans
• Neither too many spans nor too little spans for a text

• The impact of span type and span number



The discriminative ability of COSTA
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• The representations produced by COSTA are more discriminative than from SEED 



Conclusion

• We proposed a novel contrastive span prediction task to pre-train a discriminative 
text encoder for dense retrieval.

• COSTA can leverage the merits of both the autoencoder-based language models 
and contrastive learning to produce high-quality representations.

• COSTA outperforms several strong baselines and can produce discriminative 
representations for dense retrieval verified by visualization analysis and the low-
resource setting
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Future work

• Simple yet effective data augmentations for information retrieval?

• What contributes to the relevance matching?

• Larger model, more data lead to strong zero-shot performance?

• Prompt for ranking?
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Thanks！

Xinyu Ma
maxinyu17g@ict.ac.cn

Code is released at https://github.com/Albert-Ma/COSTA

https://github.com/Albert-Ma/COSTA

