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New Paradigm of NLP

* Pre-training and then fine-tuning paradigm

* Significant benefit for tasks with limited training data
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BERT

* BERT: Bidirectional Encoder Representations from Transformers
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* Pre-trained with mask language model and next sentence ¢ A comparison of BERT with previous SOTA on GLUE, SQUAD
prediction on Wikipedia and BookCorpus. 1.1, SQUAD 2.0, from Devlin et.al.

 BERT outperform previous SOTA on many natural language understanding tasks.



BERT for Information Retrieval

* Directly applying BERT to IR
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 Usage of BERT for IR. Concatenate query and document, A comparison of BERT with BM25 and previous SOTA on
take [CLS] for relevance computation downstream IR tasks.

* Pre-trained models also benefit the search tasks, but not very significant



Observation

* Pegasus for Abstractive Summarization
* SSPT for Question Answering

* SentiLARE for sentiment analysis

* ERNIE (THU) for entity-related tasks

The pre-training objective that more closely resembles the
downstream tasks leads to better and faster fine-tuning performance.



Pegasus for Abstractive Summarization

* Gap sentence generation (GSG): selected by ROUGE scores

Masked tokens Target text ROUGE1-F1
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* One sentence is masked with [MASK1] and used as target * A comparison of PEGASUS with other pretrained models on
generation text (GSG). XSum, CNN/DailyMail and Gigaword.

* Pegasus is significantly better than other pre-trained models

PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization, ICML, 2020



SSPT for Question Answering

* Span Selection PreTraining (SSPT): predict masked span(noun phrase or
entity, pseudo answer), jointly pre-training with MLM
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* Span selection training instance generation. Masked span A comparison of BERT+SSPT with BERT on SQUAD 1.1, SQUAD
will be predicted by the passage containing it. 2.0, HotpotQA and Natural Questions.

 BERT+SSPT is significantly better than original BERT

Span Selection Pre-training for Question Answering, ACL, 2020



However, pre-training objectives tailored for ad-hoc
retrieval have not been well explored.



Revisit the Pre-training Objectives

IR requirements

Sequence-based tasks:

* Masked Language Modeling | Good representations for the
* Permuted Language Modeling query and the document

Learn contextual representations

/Sequence pair-based tasks: \ : \

e Next Sentence Prediction Relevance matching between

short queries and long documents

e Sentence Order Prediction

X sentence-pair vs. query-document

Learn inter-sequence coherence x coherence vs. relevance
\ Y




Pre-training for Passage Retrieval in openQA

* Design three pre-training tasks that resemble the relevance relationship
between natural language questions and answer passages
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eIview |edi]

name machine learning was coined in 1959 by Arthur Samuel.s) Tom M. Mitchell provided a widely quoted, n
definition of the algorithms studied in the machine learning field: "A computer program is said to learn from experi
respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P,

experience E."® This definition of the tasks in which machine learning is concerned offers a fundamentally operal
rather than defining the field in cognitive terms. This follows Alan Turing's proposal in his paper "Computing Mach
Intelligence", in which the question "Can machines think?" is replaced with the question "Can machines do what v
entities) can do?".1”) In Turing's proposal the various characteristics that could be possessed by a thinking machir
various implications in constructing one are exposed.

Machine learning tasks |edit)

Machine learning tasks are classified into several broad categories. In supervised learning, the algorithm builds a
from a set of data that contains both the inputs and the desired outputs. For example, if the task were determining
contained a certain object, the training data for a supervised learning algorithm would include images with and wil
input), and each image would have a label (the output) designating whether it contained the object. In special cas
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 Natural language questions-answer passages vs. short queries-long documents
* Depend on document structure, e.g., WLP

* Marginal benefit for ad-hoc retrieval

Pre-training Tasks for Embedding-based Large-scale Retrieval, ICLR, 2020
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Design a novel pre-training objective tailored for IR,
which more closely resembles the relevance relationship
between query and document.
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Back to Statistical LM for IR

* Classical SLM for IR: the Query Likelihood model
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*The user has a reasonable idea of the terms that are likely to appear in the “idea
document that can satisfy his/her information need

*The query is generated as the piece of text representative of the “ideal” document
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Back to Statistical LM for IR

* Query likelihood scoring function derived by the Bayesian theorem

TN
P(D/Q) X P(Q/HD)P(D) X P(Q/HD) Document language model

Query generation probability Uniform distribution

* Smoothing methods for zero probability problem

* E.g., Jelinek-Mercer, Dirichlet prior, Absolute discounting

. %J()elr likelihood with Dirichlet smoothing is one of the most effective method (Zhai et.al.

P(q;|6;) = C(lvng) => C(W’Dl)l;iz(wlc), 1 is smoothing parameter, P(w|C) is collection language model

13



Pre-training Task for Ad-hoc Retrieval: ROP

* Representative words prediction (ROP) task
* Given a document, sample word sets according to the document language model

* The word set with higher likelihood is deemed as more “representative” of the
document

* Pre-train the Transformer model to predict the representativeness

Overview | edit]

An information retrieval process begins when a user enters a query into the system. Queries are formal statements of information needs, for example search strings in web search engines. In/information
retrieval a query does not uniquely identify a single object in the collection. Instead, several objects may match the query, perhaps with different degrees of relevancy.

An object is an entity that is represented by information in a content collection or database. User queries are matched against the database information. However, as opposed to classical SQL queries of

a database, in information retrieval the results returned may or may not match the query, so results are typically ranked. This ranking of results is a key difference of information retrieval searching
compared to database searching.m

Depending on the application the data objects may be, for example, text documents, images,m audio,®! mind maps["’] or videos. Often the documents themselves are not kept or stored directly in the IR
system, but are instead represented in the system by document surrogates or metadata.

Most IR systems compute a numeric score on how well each object in the database matches the query, and rank the objects according to this value. The top ranking objects are then shown to the user.
The process may then be iterated if the user wishes to refine the query."!

From https://en.wikipedia.org/wiki/Information retrieval
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Representative Word Sets Sampling

1. Given document d, initialize document
language model with Dirichlet smoothing 8

Algorithm 1 Sampling a Pair of Representative Word Sets

1: Input:Document D, Vocabulary V = {w,-}f’ , probability
of word w; generated by the document language model
with Dirichlet smoothing P(w;|D), Query likelihood score
QL(w;, D)

2. Choose length [~Poisson(A)

model

3. Paired Sampling: Sample N pairs of word sets «[fork — 1t07do
: S1 =81 USample(V),w; ~ P(w;|D)
for each document where w;~P(w;|04) | ;=50 Sample(V), wi ~ P(wi|D)

* Why? Likelihood comparable

12: |S2 _score = [_ll. QL(wj,D),w; € S

4. Higher likelihood deemed as more i 3 Ranew > B pEmerEiu
) 14: Output:(S7, S;, D)
representative 15 else
16: Output:(S, Sz+ , D)
17: end if
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Pre-training with the ROP task

* Pre-training Loss function Lrop = max(0,1— P(S1|D) + P(S;|D))
Ly = — Z log P(f‘X\f)
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7 \, S \,

________________________________________________

-
[CLS] Word Set S, [SEP] Document
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Discussions

The ROP objective belongs to the category of model-based pre-training objective where
the labels are produced by some automatic model rather than simple MASKs.

* Electra leverages a generative model to replace masked tokens
* PEGASUS leverages the ROUGE1-F1 score to select top-m sentences

Pre-training Weak supervision

VS.

What data is available?

Learning objective

Query and document,

Only documents e
label is missing

MLM + ROP Same as final ranking

objective

A variety of retrieval
tasks

Designed for each
retrieval task

Scope of application

17



Experiment Setting

* Pretraining datasets:

 Wikipedia, over 10 million documents
e MS MARCO, about 3.4 million documents

e 5 downstream ad-hoc retrieval tasks:
 Robust04, ClueWeb09-B, Gov2, MQ2007, MQ2008

* Baseline models:

* Traditional retrieval models: BM25, QL

* Previous state-of-the-art neural ranking models on each dataset: BERT-MaxP,
HINT et.al.

* Other pretraining method: BERT, Transformer;

18



Experiments — Main Results

Table 2: Comparisons between PROP and the baselines. , 7 and I indicate statistically significance with p —value < 0.05 over
BM25, BERT and Transformerj 7, respectively.

Robust04 ClueWeb09-B Gov2 MQ2007 MQ2008

Model
nDCG@20 P@20 nDCG@20 P@20 nDCG@20 P@20 nDCG@10 P@10 nDCG@10 P@10
QL 0.413 0.367 0.225 0.326 0.409 0.510 0.423 0.371 0.223 0.241
BM25 0.412 0.363 0.230 0.334 0.421 0.523 0.414 0.366 0.220 0.245
Previous SOTA 0.538 0.467 0.296 - 0.422 0.524 0.490 0.418 0.244 0.255
BERT 0.459" 0.389" 0.295" 0.367" 0.495™ 0.586" 0.506™ 0.419" 0.247" 0.256™
Transtormer;or  0.460™ 0.388 * 0.298" 0.369" 0.499*" 0.587" 0.508" 0.420" 0.245" 0.256™

f - - - - - - - \
PROPyy it ivedia  0-502°'% 042177 0316"™%  0384*TF  0519"™% 0593 0.523*™% 0.432°7F  0.262°F  0.267*"

| PROPysparco 0-484°T% 04087 0.329°TF 0.391°T%  0.525"™% 0.594*7%  0522*7% 0.430"%  0.266""* 0.269"7%

1. PROP significantly outperforms previous SOTA in 4 of 5 tasks (8.9%, 24.4%, 6.7% and 9% in terms of
NDCG@20), except for the Robust04 (BERT + Neu-IR ensemble).
PROP is significantly better than BERT and Transformer; 7 .

. . . . . . 19
Pre-training in related domain corpus is more effective.



Experiments — Impact of Pre-training Objectives

Table 3: Impact of pre-training objectives. | indicates statis-
tically significance with p — value < 0.05.

nDCG@20 nDCG@10

Robust04 ClueWeb09-B Gov2 MQ2007 MQ2008

w/ MLM 0.467 0.306 0.503 0.511  0.249

w/ ROP 0.4817 03217 05197 05207 0.262°

[w/ ROP+MLM 0.484" 0.3297  0.525" 0.522" 0.2667‘]

1. Pretraining with ROP achieves significant improvements over MLM.
2. MLM and ROP are both helpful for downstream tasks.

20



Experiments — Impact of Sampling Strategies

* docLM-based vs. Random sampling

Table 5: Impact of Different Sampling Strategies. Two-tailed
t-tests demonstrate the improvements of document lan-
guage model-based sampling to the random sampling strat-
egy are statistically significant (} indicates p-value < 0.05).

nDCG@20 nDCG@10
Robust04 ClueWeb09-B Gov2 MQ2007 MQ2008

" Random 0.471 0.304 0505 0513  0.252

\docLM-based 0.493" 03177 05177 0.516" 0-25@

— doclLM-based — docLM-based
Random vl Random

0.8 - B e S

ROP loss
(=
ch

0 5 10 15 20 25 0 5 10 15 20 25
training steps(*10k) training steps(*10k)
(a) (b)

Figure 1: (a) ROP learning curve on Wikipedia over the pre-

training steps. (b) The test performance curve on Robust04
in terms of nDCG @20 over pre-training steps.

1. docLM-based sampling converges faster and leads to better performance.

2. docLM-based sampling strategy is a more suitable way than the random sampling strategy to

generate representative word sets for a document.
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Experiments — Zero-shot and few-shot setting

—%— nDCG@20 —*— P@20 —— nDCG@20 —*— P@20 —%— NDCG@20 —*— P@20 —%— nDCG@10 —+— P@10 —— nDCG@10 —#— P@10
Robust04 ClueWeb09-B Gov?2 MQ2007 MQ2008
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0.5 1

0.23 -
0.4 -

Figure 2: Fine-tuning with limited supervised data. The solid lines are PROP fine-tuned using 0 (zero shot), 10, 30, 50, and
70 queries for Robust04, ClueWeb09-B and Gov2 datasets, using 0 (zero shot), 50, 100, 150, and 200 queries for MQ2007 and
MQ2008 datasets. The dashed lines are BERT fine-tuned using the full queries.

1. PROP fine-tuned on limited supervised data can achieve comparable performance with BERT
fine-tuned on the full supervised datasets, e.g., 30 queries on Robust04.

2. Under the zero—shot setting, PROP also achieves exciting performance

* On Gov2, PROP beats BM25 in terms of nDCG@20, and achieves about 90% performance of BERT fine-tuned on the

full dataset
22



Conclusion & Future Work

 Conclusion

* We proposed PROP, a new pre-training method tailed for ad-hoc retrieval

* PROP achieved significant improvements over the baselines without pre-training or
with other pre-training methods

* PROP can achieve strong performance under both the zero- and low-resource IR
settings

e Future work

* Go beyond the ad-hoc retrieval, and test the ability of PROP over other downstream
IR tasks, such as passage retrieval in QA or response retrieval in dialog systems

* |nvestigate new ways to further enhance the pre-training objective tailored for IR

23



Code and the pre-training models are available at:
https://github.com/Albert-Ma/PROP

Thanks!

Xinyu Ma
Mmaxinyul7g@ict.ac.cn



