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New Paradigm of NLP
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BERT
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• BERT outperform previous SOTA on many natural language understanding tasks.

• BERT: Bidirectional Encoder Representations from Transformers

• Pre-trained with mask language model and next sentence 
prediction on Wikipedia and BookCorpus.

• A comparison of BERT with previous SOTA on GLUE, SQUAD 
1.1, SQUAD 2.0, from Devlin et.al.
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BERT for Information Retrieval

• Directly applying BERT to IR
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• Pre-trained models also benefit the search tasks, but not very significant
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• Usage of BERT for IR. Concatenate query and document, 
take [CLS] for relevance computation

• A comparison of BERT with BM25 and previous SOTA on 
downstream IR tasks.



Observation

• Pegasus for Abstractive Summarization

• SSPT for Question Answering

• SentiLARE for sentiment analysis

• ERNIE (THU) for entity-related tasks

• …

The pre-training objective that more closely resembles the 
downstream tasks leads to better and faster fine-tuning performance.
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Pegasus for Abstractive Summarization

6

• Gap sentence generation (GSG): selected by ROUGE scores
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• Pegasus is significantly better than other pre-trained models

• One sentence is masked with [MASK1] and used as target 
generation text (GSG). 

• A comparison of PEGASUS with other  pretrained models on 
XSum, CNN/DailyMail and Gigaword.

PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization, ICML, 2020



SSPT for Question Answering
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• Span Selection PreTraining (SSPT):  predict masked span(noun phrase or 
entity, pseudo answer), jointly pre-training with MLM
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• BERT+SSPT is significantly better than original BERT

• Span selection training instance generation. Masked span 
will be predicted by the passage containing it.

• A comparison of BERT+SSPT with BERT on SQUAD 1.1, SQUAD 
2.0, HotpotQA and Natural Questions.

Span Selection Pre-training for Question Answering, ACL, 2020
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However, pre-training objectives tailored for ad-hoc 
retrieval have not been well explored.



Revisit the Pre-training Objectives
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IR requirements

Sequence pair-based tasks:
• Next Sentence Prediction

• Sentence Order Prediction 

Learn inter-sentence coherenceLearn inter-sequence coherence

Sequence-based tasks:
• Masked Language Modeling

• Permuted Language Modeling

Learn contextual representations 

Good representations for the 
query and the document

Relevance matching between 
short queries and long documents

x sentence-pair vs. query-document
x coherence vs. relevance



Pre-training for Passage Retrieval in openQA
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• Design three pre-training tasks that resemble the relevance relationship 
between natural language questions and answer passages

Inverse Cloze Task(ICT)

Body First Selection(BFS)

Wiki Link Prediction(WLP)

• Natural language questions-answer passages vs. short queries-long documents
• Depend on document structure, e.g., WLP
• Marginal benefit for ad-hoc retrieval

Pre-training Tasks for Embedding-based Large-scale Retrieval, ICLR, 2020



Our Goal
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Design a novel pre-training objective tailored for IR, 
which more closely resembles the relevance relationship 

between query and document.



Back to Statistical LM for IR

•The user has a reasonable idea of the terms that are likely to appear in the “ideal” 
document that can satisfy his/her information need

•The query is generated as the piece of text representative of the “ideal” document
12

ideal 
document

• Classical SLM for IR: the Query Likelihood model



Back to Statistical LM for IR
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• Query likelihood scoring function derived by the Bayesian theorem

P(D|Q) ∝ P(Q|𝜃𝐷)P(D) ∝ P(Q|𝜃𝐷)

• Smoothing methods for zero probability problem
• E.g., Jelinek-Mercer, Dirichlet prior, Absolute discounting

• Query likelihood with Dirichlet smoothing is one of the most effective method (Zhai et.al. 
2001)

𝑃 𝒒𝒊 𝜃𝐷 =
𝑐(𝑤, 𝐷)

𝐷
=>  

𝑐 𝑤,𝐷 +𝜇𝑃(𝑤|𝐶)

𝐷 +𝜇
, 𝜇 is smoothing parameter, 𝑃(𝑤|𝐶) is collection language model

Query generation probability 

Document language model 

Uniform distribution



Pre-training Task for Ad-hoc Retrieval：ROP 

• Representative words prediction (ROP) task
• Given a document, sample word sets according to the document language model

• The word set with higher likelihood is deemed as more “representative” of the 
document

• Pre-train the Transformer model to predict the representativeness
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Representative Word Sets Sampling

1. Given document 𝑑, initialize document 
language model with Dirichlet smoothing 𝜃𝑑

2. Choose length 𝑙~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)

3. Paired Sampling: Sample N pairs of word sets 
for each document where 𝑤𝑖~𝑃(𝑤𝑖|𝜃𝑑)
• Why? Likelihood comparable

4. Higher likelihood deemed as more 
representative
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Pre-training with the ROP task
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ℒ𝑀𝐿𝑀 = −

ො𝑥∈𝑋

log 𝑝( ො𝑥|𝑋\ ො𝑥)

ℒ𝑅𝑂𝑃 = max(0, 1 − 𝑃 𝑆1 𝐷 + 𝑃(𝑆2|𝐷))• Pre-training Loss function



Discussions
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The ROP objective belongs to the category of model-based pre-training objective where 

the labels are produced by some automatic model rather than simple MASKs.
• Electra leverages a generative model to replace masked tokens

• PEGASUS leverages the ROUGE1-F1 score to select top-m sentences

• ……

A variety of retrieval
tasks

MLM + ROP

Only documents

Designed for each 
retrieval task

Same as final ranking 
objective

Pre-training Weak supervision

What data is available?

Learning objective

Scope of application

Query and document, 
label is missing

VS.



Experiment Setting

• Pretraining datasets：
• Wikipedia,  over 10 million documents
• MS MARCO, about 3.4 million documents

• 5 downstream ad-hoc retrieval tasks：
• Robust04, ClueWeb09-B, Gov2, MQ2007, MQ2008

• Baseline models:
• Traditional retrieval models: BM25, QL
• Previous state-of-the-art neural ranking models on each dataset: BERT-MaxP, 

HiNT et.al.
• Other pretraining method: BERT, Transformer𝐼𝐶𝑇
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Experiments – Main Results 

1. PROP significantly outperforms previous SOTA in 4 of 5 tasks (8.9%, 24.4%, 6.7% and 9% in terms of 

NDCG@20), except for the Robust04 (BERT + Neu-IR ensemble).

2. PROP is significantly better than BERT and Transformer𝐼𝐶𝑇 .

3. Pre-training in related domain corpus is more effective.
19



Experiments – Impact of Pre-training Objectives

1. Pretraining with ROP achieves significant improvements over MLM.

2. MLM and ROP are both helpful for downstream tasks.
20



Experiments – Impact of Sampling Strategies
• docLM–based vs. Random sampling

1. docLM-based sampling converges faster and leads to better performance.

2. docLM-based sampling strategy is a more suitable way than the random sampling strategy to 
generate representative word sets for a document.

Experiments – Impact of Sampling Strategies
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Experiments – Zero-shot and few-shot setting

1. PROP fine-tuned on limited supervised data can achieve comparable performance with BERT 

fine-tuned on the full supervised datasets, e.g., 30 queries on Robust04.

2. Under the zero–shot setting, PROP also achieves exciting performance

• On Gov2, PROP beats BM25 in terms of nDCG@20, and achieves about 90% performance of BERT fine-tuned on the 

full dataset
22



Conclusion & Future Work

• Conclusion
• We proposed PROP, a new pre-training method tailed for ad-hoc retrieval

• PROP achieved significant improvements over the baselines without pre-training or 
with other pre-training methods

• PROP can achieve strong performance under both the zero- and low-resource IR 
settings

• Future work
• Go beyond the ad-hoc retrieval, and test the ability of PROP over other downstream 

IR tasks, such as passage retrieval in QA or response retrieval in dialog systems

• Investigate new ways to further enhance the pre-training objective tailored for IR
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Thanks！

Xinyu Ma

maxinyu17g@ict.ac.cn

Code and the pre-training models are available at: 
https://github.com/Albert-Ma/PROP


